
Debugging Parallel 
Programs 

Rebecca Hartman-Baker 
hartmanbakrj@ornl.gov 



2 

Outline 

•  Introduction to debugging parallel programs 
• Methods of debugging parallel programs 
• Why use a debugger? 
• What can a debugger do for me? 



3 

Debugging Parallel Programs 

• Parallel programs are hard to debug 
–  Serial programs are hard enough! 
–  Parallel programming adds complexity 
–  Must consider concurrency, synchronization, communication, 

blocking/non-blocking calls, etc. 

• Ways to debug parallel programs 
–  Print statement debugging 
–  Code reading and role-playing (I’m P0, you’re P1) 
–  Arts & Crafts/drawing 
–  Using a debugger 



4 

Print-Statement Debugging 

• Each processor dumps print statements to stdout or into 
individual output files, e.g., log.0001, log.0002, etc. 
• Advantages: easy to implement, independent of platform or 

available resources 
• Disadvantages: time-consuming, extraneous information in 

log files, tedious, not scalable (imagine 100K “Hi from 
processor x” messages?!?!) 



5 

Print-Statement Debugging 
• Analogous to bisection method of root finding – very slow! 



6 

Print-Statement Debugging 
• Analogous to bisection method of root finding – very slow! 



7 

Code-Reading and Role-Playing 

•  Find a group of willing participants (alternatively,                
do it all yourself) 
• Read through code from point of view of each processor at 

each step 
• Create a great big chart that maps behavior of every 

process 
• Advantages: helps you to learn code, and to learn who your 

true friends are ;) 
• Disadvantages: time-consuming, tedious, not scalable 

(unless you are very popular)! 



8 

Arts & Crafts/Drawing 

• Print out P copies of code 
• Cut and paste relevant lines of code on individual papers for 

each processor 
• On large paper or poster board, align papers at 

synchronization points, draw lines representing 
communication, etc. 
• Advantages: get to play with scissors and glue, learn how 

code works 
• Disadvantages: time-consuming, space-consuming, not 

scalable! 



9 

Using a Debugger 

•  Invoke executable within debugger 
•  Typically, must recompile with -g flag and optimizations off 

(for best fidelity) 
• Advantages:  
–  Debugger will concentrate on the state of the variables in the code, 

you figure out what it means 
–  Time-saving: can often isolate problem in a single trial (especially 

segfaults) 

• Disadvantages: 
–  Some debuggers not available on all platforms 
–  Sometimes code fails only with optimizations on, can be hard to 

locate exact place where things go wrong 



10 

Why Use Debuggers? 

• Debuggers can save time 
–  With print-statement debugging, must insert print statements into 

code, sift through print statements, and find error 
–  Debugger allows you to find the line of code where problem occurs 

in a single trial (no bisection) 

• Complexity of bugs grows with complexity of code 
–  More lines of code, more potential for bugs 
–  More complicated algorithm, more potential for errors 
–  Parallelism only adds to complexity 
–  Some bugs occur only at scale 



11 

What Can Debuggers Do for Me? 

• Save time 
• Allow user to concentrate on code, not background info 
• View only variable values that are needed; view values not 

previously believed to be needed 
• Pinpoint where things go wrong quickly 
• Step through code and find cause of bug 
• Run code at proper scale to find error 



12 

What Can Debuggers Do for Me? 

•  Types of bugs 
–  Segfaults 
–  Memory errors 
–  Algorithmic errors 
–  Typos 
–  “Improvements” 
–  Things that happen only at scale 
–  Etc. 



13 

A Come-to-Debuggers Moment 

•  There was once a grad student who could have been done 
with his/her dissertation SIX MONTHS EARLIER if he/she 
had been open to learning to use debuggers. 
•  “Oh no,” thought the grad student, “It will take me longer to 

learn to use a debugger than to just find this one last bug in 
my code.”  But that was never the last bug.  There was 
another, and another, and another… 
•  It takes an initial investment to learn to use a debugger, 

but that investment will more than pay off in no time. 



14 

A Come-to-Debuggers Moment 

•  That grad student can’t have his/her 6 months back, but we 
can learn from the sad story and invest some time learning 
to use a debugger! 

That unfortunate graduate student  You, having learned to use a 
debugger! 


